Helping Computers Help Themselves – IEEE Spectrum

The prosthesis uses pressure sensors to mimic the sensation of touch through vibrations. It functions almost like a regular hand. All five fingers on the lightweight prosthesis flex and extend. It offers 32 different grips.

“The most important thing for us is to give people a functioni…….

npressfetimg-5713.png

The prosthesis uses pressure sensors to mimic the sensation of touch through vibrations. It functions almost like a regular hand. All five fingers on the lightweight prosthesis flex and extend. It offers 32 different grips.

“The most important thing for us is to give people a functioning, robust prosthesis that allows them to do things they never thought they would be able to do again,” Akhtar says.

The Ability Hand is available in the United States for patients age 13 or older.

MAKING PROSTHETIC LIMBS ACCESSIBLE

Akhtar originally wanted to work with people with amputations as a physician. He earned a bachelor’s degree in biology in 2007 from Loyola University in Chicago. But while pursuing his degree, he took a computer science course and fell in love with the subject.

“I loved everything about engineering, programming, and building things,” he says. “I wanted to figure out a way to combine my interests in both engineering and medicine.”

He went on to earn a master’s degree in computer science in 2008, also from Loyola. Two years later he was accepted into the Medical Scholars Program at the University of Illinois at Urbana-Champaign. The program allows students to earn both an M.D. and a Ph.D. in tandem. Akhtar earned an additional master’s degree in electrical and computer engineering and a doctorate in neuroscience in 2016 but has not completed his medical degree.

His research for his doctorate focused on developing what eventually became the Ability Hand.

In 2014 he and another graduate student, Mary Nguyen, partnered with the Range of Motion Project, a nonprofit that provides prosthetic devices to people around the world who can’t afford them. Akhtar and Nguyen flew to Quito, Ecuador, to test their product on Juan Suquillo, who lost his left hand during a 1979 border war between Ecuador and Peru.

“Everything that we do has the patient in mind.”

Using the prototype, Suquillo was able to pinch together his thumb and index finger for the first time in 35 years. He reported that he felt as though a part of him had come back thanks to the prosthesis. After that feedback, Akhtar said, he wanted “everyone to feel the same way that Juan did when using our prosthetic hand.”

Shortly after returning from that trip, Akhtar founded Psyonic. To get some advice about how to run the company and possibly win some money, he entered the bionic hand into the Cozad New Venture Challenge at the University of Illinois. The competition provides mentoring to teams, as well as workshops on topics such as pitching skills and …….

Source: https://spectrum.ieee.org/helping-computers-help-themselves